NAG Toolbox for MATLAB

s18ad

1 Purpose

s18ad returns the value of the modified Bessel Function $K_1(x)$, via the function name.

2 Syntax

[result, ifail] = s18ad(x)

3 Description

s18ad evaluates an approximation to the modified Bessel Function of the second kind $K_1(x)$.

Note: $K_1(x)$ is undefined for $x \le 0$ and the function will fail for such arguments.

The function is based on five Chebyshev expansions:

For $0 < x \le 1$,

$$K_1(x) = \frac{1}{x} + x \ln x \sum_{r=0}^{7} a_r T_r(t) - x \sum_{r=0}^{7} b_r T_r(t),$$
 where $t = 2x^2 - 1$.

For $1 < x \le 2$,

$$K_1(x) = e^{-x} \sum_{r=0}^{7} c_r T_r(t),$$
 where $t = 2x - 3$.

For $2 < x \le 4$,

$$K_1(x) = e^{-x} \sum_{r=0}^{r} d_r T_r(t),$$
 where $t = x - 3$.

For x > 4,

$$K_1(x) = \frac{e^{-x}}{\sqrt{x}} \sum_{r=0}^{7} e_r T_r(t),$$
 where $t = \frac{9-x}{1+x}$.

For x near zero, $K_1(x) \simeq \frac{1}{x}$. This approximation is used when x is sufficiently small for the result to be correct to *machine precision*. For very small x on some machines, it is impossible to calculate $\frac{1}{x}$ without overflow and the function must fail.

For large x, where there is a danger of underflow due to the smallness of K_1 , the result is set exactly to zero.

4 References

Abramowitz M and Stegun I A 1972 Handbook of Mathematical Functions (3rd Edition) Dover Publications

5 Parameters

5.1 Compulsory Input Parameters

1: x - double scalar

The argument x of the function.

Constraint: $\mathbf{x} > 0.0$.

[NP3663/21] s18ad.1

s18ad NAG Toolbox Manual

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: result – double scalar

The result of the function.

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

 $\mathbf{x} \leq 0.0$, K_1 is undefined. On soft failure the function returns zero.

ifail = 2

 \mathbf{x} is too small, there is a danger of overflow. On soft failure the function returns approximately the largest representable value.

7 Accuracy

Let δ and ϵ be the relative errors in the argument and result respectively.

If δ is somewhat larger than the *machine precision* (i.e., if δ is due to data errors etc.), then ϵ and δ are approximately related by:

$$\epsilon \simeq \left| \frac{xK_0(x) - K_1(x)}{K_1(x)} \right| \delta.$$

Figure 1 shows the behaviour of the error amplification factor

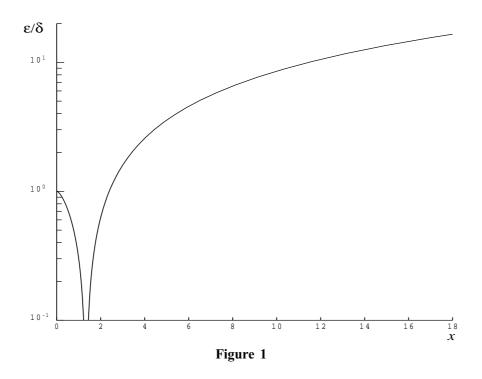
$$\left| \frac{xK_0(x) - K_1(x)}{K_1(x)} \right|.$$

However if δ is of the same order as the *machine precision*, then rounding errors could make ϵ slightly larger than the above relation predicts.

For small x, $\epsilon \simeq \delta$ and there is no amplification of errors.

For large x, $\epsilon \simeq x\delta$ and we have strong amplification of the relative error. Eventually K_1 , which is asymptotically given by $\frac{e^{-x}}{\sqrt{x}}$ becomes so small that it cannot be calculated without underflow and hence the function will return zero. Note that for large x the errors will be dominated by those of the standard function EXP.

s18ad.2 [NP3663/21]



8 Further Comments

None.

9 Example

```
x = 0.4;
[result, ifail] = s18ad(x)

result =
    2.1844
ifail =
    0
```

[NP3663/21] s18ad.3 (last)